49 research outputs found

    Modeling of Wnt-mediated tissue patterning in vertebrate embryogenesis

    Get PDF
    During embryogenesis, morphogens form a concentration gradient in responsive tissue, which is then translated into a spatial cellular pattern. The mechanisms by which morphogens spread through a tissue to establish such a morphogenetic field remain elusive. Here, we investigate by mutually complementary simulations and in vivo experiments how Wnt morphogen transport by cytonemes differs from typically assumed diffusion-based transport for patterning of highly dynamic tissue such as the neural plate in zebrafish. Stochasticity strongly influences fate acquisition at the single cell level and results in fluctuating boundaries between pattern regions. Stable patterning can be achieved by sorting through concentration dependent cell migration and apoptosis, independent of the morphogen transport mechanism. We show that Wnt transport by cytonemes achieves distinct Wnt thresholds for the brain primordia earlier compared with diffusion-based transport. We conclude that a cytoneme-mediated morphogen transport together with directed cell sorting is a potentially favored mechanism to establish morphogen gradients in rapidly expanding developmental systems

    Varicella zoster and fever rash surveillance in Lao People’s Democratic Republic

    Get PDF
    Background In Lao PDR, the epidemiology of varicella infection is uncertain, since it is not a notifiable disease and VZV outbreaks are rarely reported as fever/rash (F/R) diseases. Methods We estimated the seroprevalence of VZV (IgG ELISA) in different age cohorts (9 months to 46 years; N = 3139) and investigated VZV and 6 other viruses in patients during F/R outbreaks and in an ad hoc sentinel site in the context of the national reporting system (IgM ELISA, PCR). Results At least 80% of the sampled population had evidence of VZV infection before the age of 15. The largest increase in seroprevalence occurred between the age groups 1 to 5 and 6 to 7 year-olds. A VZV outbreak (clade 2) also occurred in this age group mostly during the first year of primary school (median age 6 years, interquartile range 4.0–7.5). During a dengue outbreak, 6% had varicella. At our F/R sentinel site, 14% of children with viral etiology were laboratory diagnosed as varicella and among others, a sizeable number of measles (N = 12) and rubella cases (N = 25) was detected compared to those reported for the whole country (N = 56 and 45), highlighting nationwide a large challenge of underreporting or misdiagnosis of these notifiable diseases because of lack of diagnostic laboratory capacity. Conclusion We recommend strengthening the clinical and laboratory diagnosis of VZV, measles and rubella, the surveillance and reporting of notifiable F/R diseases by retraining of healthcare workers and by setting up sentinel sites and enhancing laboratory capacity

    Simulation of FRET dyes allows quantitative comparison against experimental data

    Get PDF
    Fully understanding biomolecular function requires detailed insight into the systems’ structural dynamics. Powerful experimental techniques such as single molecule Förster Resonance Energy Transfer (FRET) provide access to such dynamic information yet have to be carefully interpreted. Molecular simulations can complement these experiments but typically face limits in accessing slow time scales and large or unstructured systems. Here, we introduce a coarse-grained simulation technique that tackles these challenges. While requiring only few parameters, we maintain full protein flexibility and include all heavy atoms of proteins, linkers, and dyes. We are able to sufficiently reduce computational demands to simulate large or heterogeneous structural dynamics and ensembles on slow time scales found in, e.g., protein folding. The simulations allow for calculating FRET efficiencies which quantitatively agree with experimentally determined values. By providing atomically resolved trajectories, this work supports the planning and microscopic interpretation of experiments. Overall, these results highlight how simulations and experiments can complement each other leading to new insights into biomolecular dynamics and function

    Detection of a Low Level and Heterogeneous B Cell Immune Response in Peripheral Blood of Acute Borreliosis Patients With High Throughput Sequencing

    Get PDF
    The molecular diagnosis of acute Borreliosis is complicated and better strategies to improve the diagnostic processes are warranted. High Throughput Sequencing (HTS) of human B cell repertoires after e.g., Dengue virus infection or influenza vaccination revealed antigen-associated “CDR3 signatures” which may have the potential to support diagnosis in infectious diseases. The human B cell immune response to Borrelia burgdorferi sensu lato—the causative agent of Borreliosis—has mainly been studied at the antibody level, while less attention has been given to the cellular part of the humoral immune response. There are indications that Borrelia actively influence the B cell immune response and that it is therefore not directly comparable to responses induced by other infections. The main goal of this study was to identify B cell features that could be used to support diagnosis of Borreliosis. Therefore, we characterized the B cell immune response in these patients by combining multicolor flow cytometry, single Borrelia-reactive B cell receptor (BCR) sequencing, and B cell repertoire deep sequencing. Our phenotyping experiments showed, that there is no significant difference between B cell subpopulations of acute Borreliosis patients and controls. BCR sequences from individual epitope-reactive B cells had little in common between each other. HTS showed, however, a higher complementarity determining region 3 (CDR3) amino acid (aa) sequence overlap between samples from different timepoints in patients as compared to controls. This indicates, that HTS is sensitive enough to detect ongoing B cell immune responses in these patients. Although each individual's repertoire was dominated by rather unique clones, clustering of bulk BCR repertoire sequences revealed a higher overlap of IgG BCR repertoire sequences between acute patients than controls. Even if we have identified a few Borrelia-associated CDR3aa sequences, they seem to be rather unique for each patient and therefore not suitable as biomarkers

    Genetic insights into resting heart rate and its role in cardiovascular disease

    Get PDF
    Resting heart rate is associated with cardiovascular diseases and mortality in observational and Mendelian randomization studies. The aims of this study are to extend the number of resting heart rate associated genetic variants and to obtain further insights in resting heart rate biology and its clinical consequences. A genome-wide meta-analysis of 100 studies in up to 835,465 individuals reveals 493 independent genetic variants in 352 loci, including 68 genetic variants outside previously identified resting heart rate associated loci. We prioritize 670 genes and in silico annotations point to their enrichment in cardiomyocytes and provide insights in their ECG signature. Two-sample Mendelian randomization analyses indicate that higher genetically predicted resting heart rate increases risk of dilated cardiomyopathy, but decreases risk of developing atrial fibrillation, ischemic stroke, and cardio-embolic stroke. We do not find evidence for a linear or non-linear genetic association between resting heart rate and all-cause mortality in contrast to our previous Mendelian randomization study. Systematic alteration of key differences between the current and previous Mendelian randomization study indicates that the most likely cause of the discrepancy between these studies arises from false positive findings in previous one-sample MR analyses caused by weak-instrument bias at lower P-value thresholds. The results extend our understanding of resting heart rate biology and give additional insights in its role in cardiovascular disease development

    ELIHKSIR Web Server: Evolutionary Links Inferred for Histidine Kinase Sensors Interacting with Response Regulators

    No full text
    Two-component systems (TCS) are signaling machinery that consist of a histidine kinases (HK) and response regulator (RR). When an environmental change is detected, the HK phosphorylates its cognate response regulator (RR). While cognate interactions were considered orthogonal, experimental evidence shows the prevalence of crosstalk interactions between non-cognate HK–RR pairs. Currently, crosstalk interactions have been demonstrated for TCS proteins in a limited number of organisms. By providing specificity predictions across entire TCS networks for a large variety of organisms, the ELIHKSIR web server assists users in identifying interactions for TCS proteins and their mutants. To generate specificity scores, a global probabilistic model was used to identify interfacial couplings and local fields from sequence information. These couplings and local fields were then used to construct Hamiltonian scores for positions with encoded specificity, resulting in the specificity score. These methods were applied to 6676 organisms available on the ELIHKSIR web server. Due to the ability to mutate proteins and display the resulting network changes, there are nearly endless combinations of TCS networks to analyze using ELIHKSIR. The functionality of ELIHKSIR allows users to perform a variety of TCS network analyses and visualizations to support TCS research efforts

    Computational Insights into Zebrafish Brain Development during Gastrulation

    Get PDF
    Computer simulations are advancing to become the third pillar of science besides theory and experiment. In this work, I want to showcase two interdisciplinary projects in which computer simulations greatly enhanced the understanding of novel experimental results. Both of these works cover events during the early developmental stages of zebrafish Danio rerio, (Hamilton, 1822) and elucidate the early stages of brain development. The first work clarifies whether or not a novel short-range transport method via specialized filopodia is able to form the necessary long-range gradient for the hindbrain, midbrain, and forebrain differentiation. The second work employs a cellular Potts model to clarify if a single strongly adhesive progenitor cell group is able to shape the early notochord

    ELIHKSIR Web Server: Evolutionary Links Inferred for Histidine Kinase Sensors Interacting with Response Regulators

    No full text
    Two-component systems (TCS) are signaling machinery that consist of a histidine kinases (HK) and response regulator (RR). When an environmental change is detected, the HK phosphorylates its cognate response regulator (RR). While cognate interactions were considered orthogonal, experimental evidence shows the prevalence of crosstalk interactions between non-cognate HK–RR pairs. Currently, crosstalk interactions have been demonstrated for TCS proteins in a limited number of organisms. By providing specificity predictions across entire TCS networks for a large variety of organisms, the ELIHKSIR web server assists users in identifying interactions for TCS proteins and their mutants. To generate specificity scores, a global probabilistic model was used to identify interfacial couplings and local fields from sequence information. These couplings and local fields were then used to construct Hamiltonian scores for positions with encoded specificity, resulting in the specificity score. These methods were applied to 6676 organisms available on the ELIHKSIR web server. Due to the ability to mutate proteins and display the resulting network changes, there are nearly endless combinations of TCS networks to analyze using ELIHKSIR. The functionality of ELIHKSIR allows users to perform a variety of TCS network analyses and visualizations to support TCS research efforts
    corecore